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Abstract—Deep packet inspection, in which packet payloads are matched against a large set of patterns, is an important algorithm in

many networking applications. Nondeterministic Finite Automaton (NFA) and Deterministic Finite Automaton (DFA) are the basis of

existing algorithms. However, both NFA and DFA are not ideal for real-world rule sets: NFA has the minimum storage, but the

maximum memory bandwidth; while DFA has the minimum memory bandwidth, but the maximum storage. Specifically, NFA and DFA

cannot handle the presence of character sets, wildcards, and repetitions of character sets or wildcards in real-world rule sets. In this

paper, we propose and evaluate a dual Finite Automaton (dual FA) to address these shortcomings. The dual FA consists of a linear

finite automaton (LFA) and an extended deterministic finite automaton (EDFA). The LFA is simple to implement, and it provides an

alternative approach to handle the repetition of character sets and wildcards (which could otherwise cause the state explosion problem

in a DFA) without increasing memory bandwidth. We evaluate the automaton in real-world rule sets using different synthetic payload

streams. The results show that dual FA can reduce the number of states up to five orders of magnitude while their memory bandwidth

is close to minimum.

Index Terms—Deep packet inspection, linear finite automaton (LFA), dual finite automaton (dual FA)
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1 INTRODUCTION

DEEP packet inspection, in which packet payloads are
matched against a large set of patterns, is an important

algorithm in many networking applications. Some applica-
tions, such as exact string matching, have been well studied.
However, in many others, the design of high-performance
pattern matching algorithms is still challenging. Network-
ing applications that require high-performance inspection
include: network intrusion detection and prevention sys-
tems [1], [2], [3], [4], [5], content-based routing [6], e-mail
scanning systems [7], etc. In these applications, packet
payloads must be inspected against a large set of patterns
(e.g., a rule set with thousands of regular expressions) at a
very high speed (e.g., several gigabits per second). Due to
their wide application, there is substantial research [8], [9],
[10], [11], [12] on high-speed deep packet inspection
algorithms in the literature.

In this paper, we focus on deep packet inspection
algorithms in network intrusion detection and prevention
systems. Because regular expression is expressive and is
able to describe a wide variety of patterns, the focus of the
research community has recently moved from exact string
matching to regular expression matching. A substantial
amount of work has been devoted to the architectures, data
structures, and algorithms to support fast deep packet
inspection against a rule set of a large number of regular
expressions. The main challenge with fast deep packet

inspection is to minimize the memory bandwidth and
reduce the storage to an acceptable level at the same time.

Inspection programs based on regular expressions [13]
are typically implemented by two classic finite automata
(FA): nondeterministic finite automata (NFA) and determinis-
tic finite automata (DFA). Each of them has its strengths and
weaknesses, but neither one is ideal to implement in a
general-purpose processor for real-world rule sets. NFA
has the benefit of limited storage, which is proportional to
the total number of characters in the rule set. However, it
has a nondeterministic number of concurrently active
states, which results in OðNÞ main memory accesses to
process each byte in the payload, where N is the number
of states in the NFA. This high memory bandwidth makes
NFA unacceptable in high-speed applications. On the
other hand, DFA requires a single (the minimum) main
memory access for each byte in the payload, which is
independent of the number of regular expressions in the
rule set. Unfortunately, DFA is not ideal for real-world
rule sets [8], [14] either, due to its maximum Oð2NÞ storage.
The number of DFA states can be exponential to the
number of characters N in the rule set.

Several characteristics in many real-world rule sets [1],
[2], [3], [4], [5], [6], [7], such as the repetition of subpatterns,
make the implementation of fast inspection programs a
challenging task. Much work has focused on different
compression techniques [8], [9], [14], [15], [16], [17], [18],
[19], [20], which reduce the number of DFA states or reduce
the number of transitions on the cost of increased memory
bandwidth. In this paper, we propose a novel algorithm,
called dual finite automata (dual FA). Dual FA has a much
smaller storage demand compared to DFA, and it requires
the minimum number of memory accesses among existing
compressed FAs: one, or sometimes, two main memory
accesses for each byte in the payload. This is due to the fact
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that dual FA can efficiently handle unbounded repetitions
of wildcards and character sets using a novel linear finite
automata (LFA).

Dual FA is a state compression technique [8], [18], and
state compression is the most fundamental and challenging
compression technique in reducing DFA size. Dual FA is a
simple and novel state compression technique, which can
combine with other compression techniques, such as
transition compression [9], [17] and alphabet compression
[17], [19], [20]. Specifically, our contributions are in both
theory and practice and are summarized as follows:

1. We develop a linear finite automata that handles
unbounded repetitions without a transition table
(see Section 3) and therefore requires no main
memory access.

2. We propose a dual FA, which contains an LFA and
an extended DFA (EDFA). Dual FA requires only
one (or sometimes two) memory accesses per byte in
the payload.

3. We evaluate the performance of dual FA with real-
world rule sets and synthetic payload streams. The
results show that dual FA can reduce the number of
states and transitions up to five orders of magnitude.

The remainder of this paper is organized as follows:
Section 2 provides necessary background. Section 3 de-
scribes our contributions with motivating examples. We
discuss implementation details in Sections 4. In Section 5,
we present evaluations in real-world rule sets. Section 6
reviews related work. We conclude in Section 7.

2 BACKGROUND AND MOTIVATION

2.1 Regular Expression

A regular expression, often called a pattern, is an expression
that describes a set of strings. Features found in regular
expressions derived from commonly used antiviruses and
network intrusion detection systems include exact-match
substring, character sets and simple wildcards, repetitions of
simple characters, character sets, wildcards, etc. We will use
two regular expressions “:þ B:�” and “.�½A-Q� þ ½I-Z�” in our
automaton construction examples throughout this paper.

An exact match substring is a fixed size pattern, which
occurs in the input text exactly as it is. In our example, “B”
is an exact match substring.

Character sets are found in regular expressions as ½ci � cj�
expressions. The set matches any character between ci and
cj. A wildcard, which matches any character, is represented
by a dot. In our example, “[A-Q]” matches any character
between A and Q, and “.” matches any character.

Simple character repetitions appear in the form cþ ðc
repeats at least once) or c�ðc repeats 0 or any times), where c
is a character of the alphabet. Repetitions of character sets
and wildcards may cause the state explosion problem, which
will be discussed later. Examples are “.�” and “½A-Q� þ ”.

2.2 Nondeterministic Finite Automaton

NFA and DFA are pattern matching programs that
implement a set of one or more regular expressions. In
Fig. 1, we show the NFAs accepting the regular expressions
in our example. To evaluate an FA, either an NFA, DFA, or

others, two important metrics are 1) the storage, i.e., the

amount of main memory needed to store the transition

table, and 2) the memory bandwidth, i.e., the number of

main memory accesses per byte in the payload, which is

critical to inspection speed.
The storage of an FA is proportional to its number of

states and its number of transitions per state. In an NFA,

the number of states is not greater than the number of

characters in the regular expressions in the rule set. This is

true even when the regular expressions contain repetitions

and character sets.
To calculate the memory bandwidth, we need to know

how the NFA works. The pattern matching operation starts

from the entry states that are initially active. In Fig. 1, the

entry states are 0 and 3. A match is reported every time an

accepting state (with a bold rim) is traversed. All outgoing

transitions of the active states, labeled with the next byte in

the payload, are taken. Notice that, in NFA, each state can

have more than one transition on any given character, and

many states can be active in parallel. We will call the set of

simultaneously active NFA states the active set. Since every

state traversal involves a main memory access, the size of

the active set gives a measure of the memory bandwidth.
As an example, we show how the NFA for “:þ B:�”

(Fig. 1) processes the input text “DCBA.” This NFA

traversal results in the following sequence of active sets:

ð0Þ !D ð0; 1Þ !C ð0; 1Þ !B ð0; 1; 2Þ !A ð0; 1; 2Þ:

In this example, the largest active set size is 3 (the maximum

active set includes all of the states in the NFA). Theoreti-

cally, NFA has the maximum memory bandwidth.

2.3 Deterministic Finite Automaton

Different from an NFA, in a DFA, each state has exactly

one outgoing transition for each character of the alphabet.

Consequently, its active set always consists of a single

state. The DFAs for regular expressions “:þ B:�” and

“.�½A-Q� þ ½I-Z�,” respectively, are shown in Fig. 2. In this

figure, “[^A-Q]” is the complementary character set of

“½A-Q�.” These DFAs can be constructed from the NFAs in

Fig. 1, respectively, using the standard subset construction

routine [13], in which a DFA state is created for each

possible active set of NFA states. In Fig. 2, the label inside

each DFA state shows the active set of NFA states, for

which the DFA state is created.

LIU AND WU: FAST DEEP PACKET INSPECTION WITH A DUAL FINITE AUTOMATA 311

Fig. 1. The NFAs for “:þ B:�” and “.�½A-Q� þ ½I-Z�,” respectively.



2.4 The State Explosion Problem

The state explosion problem is: when several regular expres-
sions containing repetitions of character sets are compiled
together into a single DFA, the number of DFA states may
increase exponentially [8]. In this case, a single DFA is not
ideal due to the huge amount of storage needed to store its
transition table. In the worst case, for a regular expression
whose NFA has N states, the number of active sets (or DFA
states) can beOð2NÞ. Note that in reality this may not happen
because not all of the 2N combinations are possible active sets.

Here, we provide a slightly different explanation: the
state explosion problem [8], [9], [10], [11], [12] in a DFA is
caused by the fact that a large number of NFA states can be
active independently.

Definition 1 (Independent NFA states). Two NFA states are
independent if they can be active independently. Specifically,
two NFA states, u and v, are independent if there exist three
active sets, A, B, and C, such that u 2 A and v 62 A, u 62 B,
and v 2 B, and u 2 C and v 2 C.

As an example, in the NFA of “.�½A-Q� þ ½I-Z�” (as shown
in Fig. 1), states 4 and 5 are independent because, in the
corresponding DFA (Fig. 2), there exist active sets (3,4),
(3,5), and (3,4,5). On the other hand, in the NFA of “:þ B:�,”
each pair of states is not independent, since in all of its
active sets (i.e., (0), (0,1), and (0,1,2)), all sets contain state 0,
and all sets containing state 2 also contain state 1.

Independent NFA states cause an increase in the number
of states in the corresponding DFA, as we have seen in
Fig. 2right. Moreover, when combining both of the NFAs
(Fig. 1) into a single DFA (Fig. 3), the increase becomes more
significant. This increase occurs because state 2 in the first
NFA is independent of all states in the second NFA. The
consequence is that all states in the second DFA (on the right
of Fig. 2) show twice in the combined DFA (Fig. 3).

In general, NFA states that are independent of many
other NFA states may cause a massive increase in the
number of DFA states. This is because: 1) in the subset
construction algorithm, which constructs a DFA from an
NFA, a DFA state is created to represent each possible set of
NFA states that can be concurrently active, and 2) the
independent NFA states, which can be active or inactive
independent of other NFA states, increase the number of
possible combinations of concurrently active NFA states,
i.e., the number of DFA states. Therefore, as the number of

independent NFA states increases, the state explosion
problem becomes more significant. We will discuss how
to identify these independent NFA states later.

State explosion can be mitigated by dividing the rules
into different groups and compiling them into respective
DFAs [8]. However, there are two problems with this
approach: first, it increases the memory bandwidth since
each of these DFAs must access the main memory once for
each byte in the payload. Second, the state explosion
problem might occur even when compiling a single rule,
such as “:þ B:�j.�E½A-Q� þG.”

This paper focuses on state compression. For other
compression techniques, please refer to [9], [17] (transition
compression) and [17], [19], [20] (alphabet compression).

3 DUAL FINITE AUTOMATA

We use a different method, called dual finite automata, to
mitigate the state explosion problem. First, we identify those
NFA states that cause the state explosion problem in DFA,
i.e., those that are independent to a large number of other
states. Then, we use a linear finite automaton (Definition 2) to
implement these NFA states. Then, we compile the rest of
the NFA states into a single extended DFA, whose size is
significantly reduced after getting rid of those “proble-
matic” NFA states. Finally, since the LFA and the EDFA
cannot work separately, we implement an interaction
mechanism. The fact that the LFA and the EDFA cannot
work separately is because a pair of NFA states, imple-
mented by the LFA and the EDFA, respectively, may have
transitions between them. The difference between EDFA
and DFA is that EDFA has extra features to support the
interaction mechanism. Let us start with the LFA.
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Fig. 3. A single DFA for “:þ B:�” and “:�½A-Q� þ ½I-Z�.”

Fig. 2. The DFAs for “:þ B:�” and “:�½A-Q� þ ½I-Z�,” respectively. We
abbreviate the bracket expression, e.g., we use “A-H” as an alias for the
character set “[A-H].”



Definition 2 (Linear finite automaton). A linear finite
automaton is an NFA in which each state can have transitions
from (to) at most one other state, excepts self-transitions.

An LFA implementing an NFA with k states (with k
being small) can be very memory efficient. It does not
require a huge DFA transition table containing entries for all
of the Oð2kÞ states. We use k bits to represent an active set,
and we use 2C of bit-masks of k bits to calculate all of the
state transitions, where C is the alphabet size. Specifically,

1. each of the k NFA states is represented by a bit, and
the k bits are represented by a bit-array l;

2. the states are ordered such that if state u can transit
to state v and state u is represented by the ith bit,
then state v must be represented by the ði� 1Þth bits
(the ði� 1Þth bit is to the right of the ith bit);

3. a k-bits mask, self½c�, is associated with each
character c in the alphabet whose ith bit is 1 only
if the ith state has a transition to itself on
character c; and

4. ak-bits mask,next½c�, is associated with each character
c in the alphabet whose ith bit is 1 only if the ith state
has a transition to the ði� 1Þth state on character c.

Given the active set states l (represented by bit-array),
the next byte c in the payload, and the masks self ½c� and
next½c�; the next active set can be calculated using the
following bitwise operations: ðl&self½c�Þjððl&next½c�Þ � 1Þ,
where &, j, and � are bitwise operators and, or, and right-
shift, respectively. In a general-purpose processor (or in
ASIC hardware), the 2C of bit-marks used can be stored in
the cache (or on-chip memory) instead of in main memory
(or external memory). LFA is fast for eliminating main
memory accesses. Also, since we use LFA to implement
those NFA states that cause state explosion in DFA, the
EDFA, which implements the remaining DFA states,
becomes very compact.

In Section 4.1, we will analyze how to identify the NFA
states that cause state explosion. We can see that they
include the NFA states corresponding to the unbounded
repetitions in regular expressions. This leads to one of our
contributions: LFA handles unbounded repetitions without
a transition table.

3.1 The Differences to Existing Methods

Here, we provide a brief discussion on the differences
between the proposed dual FA and existing methods. In [8],
NFAs are divided into M groups, which are then compiled
into M DFAs, respectively. While in the dual FA, the

problematic NFA states are separated and are implemented
by the LFA to reduce the storage of the DFA.

Using auxiliary variables, such as the LFA, to devise a
compact and efficient inspection program is challenging.
Two seminal papers, H-FA [18] and XFA [21], use auxiliary
variables to represent the “factored out” auxiliary states and
to reduce the DFA size. However, the auxiliary variables are
manipulated by auxiliary programs associated with each
state or transition, resulting in extra memory accesses to
obtain the auxiliary programs in addition to the state
indexes. Second, H-FA [18] uses conditional transitions that
require a sequential search. Moreover, the number of
conditional transitions per character can be very large in
general rule sets, which results in a large transition table
and a slow inspection speed. XFA uses several automata
transformations to remove conditional transitions. How-
ever, to preserve semantics, XFA is limited to one auxiliary
state per regular expression, which is unsuitable for
complex regular expressions. On the other hand, LFA uses
a single piece of program to generate its next state, and dual
FA requires at most two memory accesses for each byte in
the payload.

3.2 Examples of Dual Finite Automata

Dual FA can be better illustrated directly by examples. In
Fig. 4, we show a dual FA with an LFA, whose size is two
(which means the LFA implements two NFA states). A dual
FA needs to maintain two states for its LFA (with a bit-
array) and its EDFA (with an integer state index),
respectively. In the figure, each EDFA state represents a
subset (which does not contain any LFA state) of a possible
active set of the NFA. For example, since (0,1,2,3) is an
active set for the NFAs and 2 is not in any EDFA state
because it belongs to the LFA, (0,1,3) is a state in EDFA.
Each EDFA transition is labeled with a character set and,
optionally, a set of LFA states. In Fig. 4, the transition
labeled with “[A-Q] {4}” means that state (0,3) transits to
state (0,1,3) on any character c 2 [A-Q] and, while this
transition occurs, the LFA state 4 will be set to active.

According to Definition 2, each LFA state can have at
most three transitions. The first is a self-transition, e.g.,
the transition from state 4 to itself, which is labeled with
“[A-Q]” in Fig. 4b. The second is a transition to another
LFA state. This transition does not exist in the example
shown in Fig. 4b but exists in another example shown in
Fig. 5b (the transition labeled with “[I-Z]”). The third
transition does not transit to any LFA state, but it sets
active an NFA state that is implemented by the EDFA,
e.g., the transition labeled with “[I-Z]{5}” in Fig. 4b.
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Fig. 4. The dual FA for “:þ B:�” and “:�½A-Q� þ ½I-Z�” with the size of the LFA being 2.



Corresponding to this type of transition, there is an
additional type of transitions in the EDFA that a normal
DFA does not have, which are called secondary transitions.
An example of a secondary transition is shown with a
dashed line in Fig. 4. The label “{5}” on this transition
suggests that, when NFA state 5, implemented by the
EDFA, is set to active (by the LFA), the EDFA transits
from state (0,1,3) to (0,1,3,5). To provide more details on
the implementation, we show the transition tables for the
dual FA in Table 1.

Another example of dual FA with an LFA of size 3 is
shown in Fig. 5, which is functionally equivalent to the
NFAs in Fig. 1 and the dual FA in Fig. 4. Its transition table
is shown in Table 2. Note that, in this example, no
secondary transition table is required for the EDFA, which
means that this dual FA has exactly one main memory
access per byte in the payload.

3.3 The Execution of Dual FA

In the following, we will show how the LFA and the EDFA
interact with each other when consuming a byte in the
payload, so that the dual FA is functionally equivalent to
other finite automaton. For each bye in the payload, a dual
FA executes the following actions: 1) according to the next
byte in the payload, the LFA and the EDFA take their
transitions and determine their new active states, respec-
tively; 2) additional NFA states in the LFA might be set to
active if they are indicated by the transition taken by the
EDFA; 3) the EDFA experiences a secondary transition if it
is indicated by the transition taken by the LFA.

As an example, we show an execution of the dual FA in
Fig. 4 when consuming string “AZ.” The initial state of the

dual FA is (0,3)(), where (0,3) is the initial EDFA state,1 and

() is the initial LFA state in which no state is active. When

consuming character “A,” the EDFA transits to state (0,1,3),

and no second transition is taken because there are no

active states in the LFA that can trigger a second transition

of the EDFA. In this EDFA transition, state 4 in the LFA is

set to active. Therefore, the new state of the dual FA is

(0,1,3)(4). Then, the dual FA proceeds to consume the next

character “Z.” In the EDFA, state (0,1,3) transits to itself via

the transition labeled “[^A-Q],” which does not set any

states in the LFA to active. In the LFA, the active state 4

takes the transition labeled “[I-Z]{5}.” The result is that 1)

there is no new active state in the LFA since no transition to

any LFA state is taken, and 2) the EDFA experiences a

second transition from states (0,1,3) to (0,1,3,5). Thus, the

new state of the dual FA is (0,1,3,5)().

To show that dual FA is equivalent to other finite

automata, we compare this execution of the dual FA (Fig. 4)

to that of its corresponding DFA (Fig. 3) as follows:

Dual FA: ð0; 3ÞðÞ !A ð0; 1; 3Þð4Þ !Z ð0; 1; 3; 5ÞðÞ
DFA: ð0; 3Þ !A ð0; 1; 3; 4Þ !Z ð0; 1; 3; 5Þ.

Theorem 1. For any DFA, there is an equivalent dual FA.

Proof. It is sufficient to prove that: 1) each DFA state can be

mapped into a dual FA state, and 2) each DFA transition

can be mapped to a dual FA transition.
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TABLE 2
Transition Tables of the Dual FA in Fig. 5

1. In implementation, a EDFA state is encoded as an integer state index.
In this example, we use (0,3) to illustrate that the EDFA state corresponds to
the configuration where only the NFA states 0 and 3 implemented by the
EDFA are concurrently active.

TABLE 1
Transition Tables of the Dual FA in Fig. 4

Fig. 5. The dual FA for “:þ B:�” and “:�½A-Q� þ ½I-Z�” with the size of the LFA being 3.



First, each DFA state d1 represents a set of concur-
rently active NFA states. Let N be the set of total NFA
states, L be the set of NFA states implemented by the
LFA, and E ¼ N � L is the set of NFA states implemen-
ted by the EDFA. The DFA state can be mapped into a
dual FA state ðe1; l1Þ, where e1 ¼ d1 \ E, l1 ¼ d1 \ L, and
d1 ¼ e1 [ l1.

Second, we will prove that, for a byte c, if the DFA
transits from states d1 to d2, d1 maps into the dual FA
state ðe1; l1Þ, and d2 maps into the dual FA state ðe2; l2Þ,
then, the dual FA transits from ðe1; l1Þ to ðe2; l2Þ on c. Let
Tn : N � C ! N be the transition function of a NFA, and
let Td : D� C ! D be the transition function of a DFA,
where D � 2N is the set of DFA states. We have
Tdðd; cÞ ¼ [n2dTnðn; cÞ. For dual FA, we define

T 1 : E � C ! E as T 1ðe; cÞ ¼ E \ ð[n2eTnðn; cÞÞ;
T 2 : E � C ! L as T 2ðe; cÞ ¼ L \ ð[n2eTnðn; cÞÞ;
T 3 : L� C ! E as T 3ðl; cÞ ¼ E \ ð[n2lT nðn; cÞÞ;
T 4 : L� C ! L as T 4ðl; cÞ ¼ L \ ð[n2lT nðn; cÞÞ:

T 1 toT 4 are implemented in dual FA as follows: (T 1,T 2)
is given directly by the entries in the main EDFA transition
table, while T 3 and T 4 are given by the LFA. In our
implementation, for example, T 3ðl; cÞ ¼ l&extern½c� (see
Section 3.4), and T 4ðl; cÞ ¼ ðl&self½c�Þjððl&next½c�Þ � 1Þ.
e2 ¼ T 1ðe1; cÞ [ T 3ðl1; cÞ and the union is implemented by
the secondary transition, where the result of T 3ðl1; cÞ is
mapped to the virtual input byte. l2 ¼ T 2ðe1; cÞ [ T 4ðl1; cÞ
and the union is implement by bitwise or.

Finally, from the definition of T 1 to T 4, we have

e2 [ l2 ¼ T 1ðe1; cÞ [ T 2ðe1; cÞ [ T 3ðl1; cÞ [ T 4ðl1; cÞ

¼ [n2e1[l1T
nðn; cÞ ¼ [n2d1

Tnðn; cÞ ¼ d2:

ut

3.4 The Dual FA Transition Tables

Each EDFA transition needs to be encoded by two bit-
arrays. The first bit-array indicates the index of the next
EDFA state. The second bit-array (with k bits) indicates the
states in the LFA (of size k) that are set to active by this
EDFA transition, where k is the LFA size. For example, as
shown in Table 2, given that state (0,1,3) in the EDFA table
is indexed by 0 and that, in the LFA, the NFA states 2, 4,
and 5 are given indexes 0, 1, and 2 in the bit-array,
respectively, the EDFA transition table item “(0,1,3){4}” is
encoded in binary as “0,010,” where “010” is a bit-array
which shows that the transition sets the NFA state 4, whose
index is 1, to active.

Recall that each LFA state can only have three types of
transitions, and the first two types are implemented with a
number jCj of k-bit self masks and k-bit next bit-masks,
where jCj is the size of the alphabet. Additionally, we use a
number jCj of k-bit extern masks to implement a third type
of transitions. According to Definition 2, each LFA state can
only transit to at most one external NFA state (non-LFA
state). The ith bit in extern½c� is 1 only if the ith LFA state
transits to an external NFA state on c.

Let l be the bit-array representing the old LFA states,
and let c be the next byte in the payload. It is not difficult to

prove that each l & extern[c] uniquely represents the set of
external NFA states that are set to active by the LFA after
consuming c. Consequently, the alphabet of the secondary
EDFA transition table contains all bit-arrays for the
possible results of l&extern½c�. We simply use a noncollid-
ing hashing (hashðeÞ ¼ e%D, modulo a constant D) to
compress this alphabet size. The transition tables in dual
FA can be further compressed by different table encoding
techniques [22].

In the execution of a dual FA, there is exactly one active
EDFA state anytime: for each byte c consumed, the EDFA
will experience a normal transition first and probably a
secondary transition. If there is a secondary transition, it is
determined by the virtual input byte calculated by
ðl&extern½c�Þ%D, where l is the bit-array representing the
currently active LFA states.

4 IMPLEMENTATION DETAILS

4.1 Linear Finite Automaton

Number of LFA states: there is a tradeoff between the per-
flow dual FA state size (the length of the EDFA state index
plus the length of the LFA active-set bit-array) and the
storage of the EDFA transition tables, which will be
examined in Section 5.

LFA states selection: since the size of a DFA cannot be
determined before enumerating all of the states in the DFA,
selecting the optimal k NFA states into the LFA to minimize
the storage of the EDFA (which implements the rest of the
N � k NFA states) is an NP-hard problem: it requires the
enumeration of all possible combinations of the sets of
k NFA states and the construction of the corresponding
EDFA. Therefore, we need to use a greedy heuristic
algorithm to select the k LFA states one by one.

First, we observe that an NFA state that is continuously
active for a long sequence of input bytes (except those
NFA states that are constantly active) has more chances to
be active both when other states are active and inactive,
and therefore, are likely to be independent of other NFA
states. On the other hand, NFA states that seldomly keep
active for even a few consecutive input bytes are less likely
to be independent. The former type of NFA states include:
1) the states with self-transitions on a large character set,
e.g., state 4 in Fig. 1; 2) states with incoming transitions on
a large character set from the states in case 1, e.g., state 5
in Fig. 1.

In our LFA selection heuristics, each NFA state is given a
score which equals the sum of the size of the character set
mentioned in cases 1 and 2. In each round, an eligible NFA
state with the highest score is selected and added to the
LFA. An NFA state is eligible if the added state and the LFA
states, together, still form an LFA.

4.2 Extended Deterministic Finite Automaton

After the k LFA states are selected, we can build an
EDFA to implement the rest of the NFA states. We divide
the EDFA states into two categories: 1) expandable states
and 2) nonexpandable states. An expandable state is a
state that has one or more secondary transitions to other
states. For example, in Fig. 4, state (0,1,3) is an
expandable state, and other states are nonexpandable
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states. When consuming a byte, the EDFA experiences a
secondary transition only when all of the following
conditions hold: 1) the EDFA transits to an expandable
state, 2) the set of active LFA states are not empty before
consuming the byte, and 3) one of the LFA transitions
indicates a secondary EDFA transition.

EDFA construction: the EDFA construction algorithm is
listed in Algorithm 1. In this algorithm, we think of each
DFA state d, each EDFA states e1, e2, and e3, and each LFA
configuration l1 � L, as a set of active NFA states. In the
algorithm, e1 is an EDFA state, which is a subset of a
particular DFA state d; l1 is a LFA configuration concurrent
to e1 (i.e., e1 [ l1 ¼ d); the function active_set(s, c) returns
the active set transit from active set s on byte c; e2 ¼
active setðe1; cÞ � L is an EDFA state (an active set) transit
from e1 on c; eþ ¼ active setðL1; cÞ � L is the active set
transit from l1 on c.

Algorithm 1. EDFA construction

1: D the set of DFA states

2: L the set of LFA states

3: for each (d in SD)

4: e1  d� L
5: l1  d \ L
6: for each (c in CHAR_SET)

7: e2  active_set(e1, c) �L
8: tx_1[e1][c]  e2

9: eþ  active_set(l1, c) �L
10: e3  e2 [ eþ
11: if (e3 6¼ e2) tx_2[e2][hash(eþ)]  e3

Next, we complete the secondary EDFA transition, with
1) e2 being set active by e1, 2) eþ being set active by the LFA
configuration l1, and 3) e3 ¼ e2 [ eþ being the final EDFA
state. The secondary transition is from e2 to e3 and eþ is the
character in the transition. To reduce the alphabet, we use a
function hashðeþÞ ¼ eþ%D. In this construction, e2 is an
expandable EDFA state (that has secondary transitions) if it
is not equal to e3.

4.3 Dual Finite Automaton

The dual FA simulator is listed in Algorithm 2. In this
algorithm, e1, l1 is the current EDFA state and LFA
configuration, respectively. e3, l3 is the new EDFA state
and LFA configuration after consuming character c,
respectively. lþ represents those LFA states that are set to
active by the EDFA transition when consuming character c.
eþ represents those NFA states implemented by the EDFA
that are set to active by the EDFA when consuming
character c.

Algorithm 2. DualFA simulator

1: ðe2; lþÞ  tx_1½e1�½c�
2: if (l1 ¼ 0)

3: e3  e2

4: l3  lþ
5: else

6: eþ  l1 & extern[c]

7: if (eþ ¼ 0) e3  e2

8: else e3  tx_2½e2�½hashðeþÞ� // secondary transition

9: l3  lþj (l1 & self[c]) j ((l1 & next[c]) � 1Þ

4.4 A Discussion on Hardware Implementations

Although dual FAs have small storage sizes, they are still
too large for pure hardware implementations. We consider
a hardware architecture consisting of a small processing
engine, e.g., implemented on an FPGA, coupled with a
memory bank. The simple logic needed to implement in a
dual FA reduces the need for LUTs compared to an NFA,
which can lead to higher operating frequencies.

In the previous Algorithm 2, we have an additional if-else
statement in order to save instructions whenever possible. If
we implement the same logic in hardware, the algorithm
can be simplified as listed in Algorithm 3. Also, the
parallelism available in hardware, such as an FPGA, allows
the processing of the three tasks in step 1 of Algorithm 3 to
be completed in one memory cycle. Also, step 2 can be
postponed to the beginning of the next memory cycle.

Step 3 of Algorithm 3 is invoked only when a secondary
transition is needed. There can be two implementation
options for this step: 1) implement secondary transitions in
hardware, or 2) put the secondary transition table in the
memory bank. As we will see Table 6b, the number of
secondary transitions can be very small, which makes
hardware implementation possible. On the other hand, if
the secondary transition table is put in the memory, there
should be a signal to delay the input of the next bytes, until
the access to the secondary transition table completes.

Algorithm 3. Hardware dual FA implementation

1: l2  (l1 & self[c]) j ((l1 & next[c]) � 1)
eþ  l1 & extern[c]

ðe3; lþÞ  tx_1½e1�½c�
2: l3  lþjl2
3: if (eþ > 0) e3  tx_2½e3�½hashðeþÞ�

5 EVALUATION

To evaluate the proposed algorithm, we endeavored the
following efforts: first, we developed several compilers,
which read files of rule sets and create the corresponding
inspection programs and the transition tables for DFA,
MDFA [8], H-FA [18] and dual FA. Second, we extracted
rule sets from the Snort [1], [2] rules. Third, we developed
a synthetic payload generator. We generate the inspection
programs for the rule sets, measure their storages, and
feed them with the synthetic payloads to measure their
performances.

5.1 Evaluation Method

We compare dual FA with DFA and MDFA [8]. MDFA
divides the rule set into M groups and compiles each group
into a distinct DFA. Although our algorithm can be
combined with MDFA (i.e., we can replace each DFA in an
MDFA with a dual FA), we compare our algorithm with this
widely adopted algorithm to show the efficiency of our
method in terms of storage and memory bandwidth. We
compare dual FAs whose LFAs are implemented by one
computer word of 32 bits, as well as two words and three
words with MDFAs with two, three, and four paralleled
DFAs, respectively. We called the compared FAs dual FA 1,
dual FA 2, dual FA 3, MDFA 2, MDFA 3, MDFA 4, respectively.
Since we assume that each computer word is 32 bits, dual
FA 1 and MDFA 2 have the same per-flow state size, along
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with dual FA 2 and MDFA 3, and dual FA 3 and MDFA 4. We
summarize the algorithms in comparison in Table 3.

Since our algorithm is for state compression, we do not
compare our algorithm with other types of algorithms that
are orthogonal and complementary to our algorithm, such
as transition compression [9], [17] and alphabet compres-
sion [17], [19], [20]. We will examine how well dual FA can
be combined with these algorithms in our future work. We
do not show the results of H-FA [18] because, with our rule
sets, it has very large numbers of conditional transitions per
character, which results in significant memory require-
ments and memory bandwidth. We did not implement XFA
[21] because the XFA compiler, which employs complicated
compiler optimization technologies, is not available.

We developed our compilers based on the Java regular
expression package “java.util.regex.�.” Our compilers gen-
erate NFA data structures instead of parser trees as in the
original implementation. All Perl-compatible features, ex-
cept back reference and constraint repetition, are supported.
Our compilers output C++ files for NFAs, DFAs, H-FA, and
dual FAs, respectively. The construction of the dual FAs is
as efficient as the construction of DFAs.

We extracted rule sets from Snort [1], [2] rules released
December 2009. Rules in Snort have been classified into
different categories. We adopt a subset of the rule set in
each categories, such that each rule set can be implemented
by a single DFA using less than 2 GB of memory. Almost all
patterns in our rule sets contain repetitions of large
character sets. The information about the rule sets we used
is listed in Table 4. This table lists the information about the
sizes of the NFAs and DFAs constructed from each rule set.

Synthetic payload streams are generated to be inspected
by different FAs to measure their average number of main
memory accesses during the inspection. Each payload file
consists of payload streams of 1 KB, and the total size of
each payload file is 64 MB. To generate a payload stream for
a rule set, we create a DFA for the whole rule set and travel
the DFA in the following way: we count the visiting times of
each state and give priority to the less visited states and
nonacceptance states. This traffic generator can simulate
malicious traffic [22], which prevents the DFA from
traveling only low-depth states, as it does in normal traffic.

5.2 Performance Measurements

Since our focus is not in transition table encoding
techniques [22], we measure the storage of the compared
FAs in terms of 1) the number of states, 2) the number of
transitions, and 3) the storage size of the transition tables

storing direct indexes. These measurements are important
since, ideally, the number of states determines the number
of bits required to encode a state index, and the number of
transitions is the minimum number of entries in a transition
table for any table encoding technique. For example, a DFA
requires a minimum of t log2 s bits, given the number of
states s and the number of transitions t.

According to whether they can have secondary transi-
tions, the EDFA states can be divided into two categories:
expandable states and nonexpandable states. According to
whether some of their transitions can set LFA states to
active, they can be divided into another two categories: bit-
setting states and non-bit-setting states. In some cases,
especially for dual FA 1s, the number of states belonging
to the first categories can be very small in number and, for
the rest of the states, transitions can be encoded by single
state indexes. If we divide the EDFA states into four
subcategories and encode them separately, a dual FA,
whose number of states/transitions are equal to a DFA, can
have a comparable storage requirement to a DFA.

The inspection speed of a dual FA, as well as other finite
automata, depends on the hardware on which it is
implemented. Even on general-purpose processors or ASIC
hardware, it differs in the amounts of cache or on-chip
memory. We measure the inspection speed primarily on
memory bandwidth, i.e., the number of main memory
accesses per KB of payload. This is because the execution of
an instruction is usually much faster than fetching a piece of
data from the external memory. Furthermore, with multi-
core CPUs, the speed of main memory will further lag
behind that of computation. We also generate inspection
programs on personal computers with large cache memory
and measure the inspection speed in terms of the time they
take to inspect 64 MB of payload.

5.3 Results on Storage

The number of states and transitions are shown in
Tables 5a, 5b, 5c, and 5d. As shown in Table 5a, the
numbers of states in dual FA 1 ranges from 0.04 to 1 percent
of those of DFA. The numbers of states of dual FA 2 and
dual FA 3 are even smaller, but no further significant
reduction is found as the size of LFA increases. The
numbers of states in dual FAs are up to four orders of
magnitude smaller than those of DFA. Compared with
MDFA in Table 5b, under the same per-flow state sizes, the
dual FA are up to (e.g., in the “exploit-19” rule set) two
orders of magnitude smaller in the numbers of states. The
dual FA also have smaller numbers of states than MDFA for
all rule sets, except for the “web-client-35” rule set.

For the numbers of transitions, as shown in Table 5c,
dual FA 1 is up to four orders of magnitude smaller than
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DFA and two orders of magnitude smaller than MDFA 2 in

Table 5d. The number of transitions also decreases as the

number of computer words used by the LFA increases: dual

FA 3 is up to four orders of magnitude smaller than DFA

and up to one order of magnitude smaller than MDFA 4.
An important observation regarding the number of states

and transitions in dual FA is that: they decrease signifi-

cantly using the first computer word for the LFA, but less

significantly when subsequent words are used. This shows

that our LFA states selection algorithm is able to identify the

states that contribute most to the state explosion problem. A

method to construct dual FA in practice is to construct dual
FA with an increasing number of words for their LFA until
the number of states/transitions decreases to a desired
value or the number of words increases to a certain limit.

The storage size of the transition tables storing direct
indexes are compared in Tables 5e and 5f. Contrary to
number of states and transitions, the storage size of dual FA
increases as the number of computer words used by the
LFA increases. This is because, for a dual FA whose LFA
uses K words, each entry in its transition table contains
K þ 1 words, and the reduction in the number of states is
not as fast as the increases in K. However, when compared
with MDFA, dual FA 1 is still up to two orders of
magnitude smaller than MDFA 2, and dual FA 2 is smaller
than MDFA 3 in five out of six rule sets. From these results,
we can see that the compression of dual FA is more efficient
for the rule sets where the number of NFA states with self-
transitions (which are likely problematic NFA states) is
small, and the state explosion is significant, such as rule sets
#1 and #6 (Table 4).

In Table 6, we show the number of states that have
secondary transitions (2nd states), the number of states that
set LFA states to active (bit-setting states) and the number
of secondary transitions in dual FA 1. The results show that
the number of 2nd states and bit-setting states are small:
when the number of EDFA states is large, e.g., in rule sets
“spyware-put-93” and “web-client-35,” the percentage of
2nd states and bit-setting states are small. The number of
2nd transitions ranges from 0.2 to 2.2 percent of those of the
primary EDFA transitions, which are also very small.
Therefore, the storage size of a dual FA is dominated by
its EDFA table.

5.4 Results on Memory Bandwidth and Speed

The number of main memory accesses for DFA, MDFA, and
dual FA during their inspection are shown in Fig. 6. The
results show that the number of accesses of MDFA increases
proportionally to the number of extra DFAs. On the other
hand, dual FAs have an average of 1.02 accesses per byte in
the payload. This is because a secondary transition occurs
only when the following conditions are satisfied simulta-
neously: 1) the EDFA transits to an expandable state, which
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accounts for a small percentage, e.g., 10 percent, of the
EDFA states, as shown in Table 6; 2) some LFA states are
active before consuming the next byte; 3) some active LFA
states set the external state (the NFA states implemented by
the EDFA) to active when consuming the next byte in the
payload. The results suggest that, by satisfying all these
three conditions, the chance of a secondary transition drops
to 2 percent, even under the synthetic even payloads.

We also generate inspection programs in C++ and Java,
respectively, on personal computers in order to show the
computational efficiency of dual FA. For two of the rule
sets, the inspection speed of DFA is very slow because the
DFA transition tables are particularly large in these cases,
which cannot be effectively handled by the memory
hierarchy (i.e., the 8 MB L3 cache in our PC). Three
observations can be made from the results in Figs. 7 and 8
about dual FA: 1) dual FA 1 is more efficient than MDFA 2
in the challenging cases where DFAs are extraordinarily
large and slow (i.e., rule sets #1 and #6), while dual FAs
have much smaller transition tables than MDFAs as can be
seen in Tables 5a to 5f; 2) dual FA 2 and 3, which require
more computer instructions, are not suitable for sequential
processors; 3) when memory hierarchy comes into play, as
in other cases, MDFA is the fastest even though it has the
largest number of memory accesses. Dual FA becomes
comparatively slow because it requires several instructions.
On the other hand, when memory hierarchy takes no effect,
as in the cases of DFA in rule sets #1 and #6, memory access
is a major bottleneck, and dual FA excels.

5.5 Summary and Discussion

The results of the evaluation show that LFA is very efficient
in reducing the number of states and transitions. It can
reduce up to four orders of magnitude compared to DFA
and two orders of magnitude compared to MDFA. Also,
dual FA is much faster in terms of number of main memory
accesses: the number of memory accesses hardly increase in
the dual FAs, while the number of memory accesses in a
MDFA increases as the number of extra DFAs increases.

Comparing the results on compression (Tables 5a to 5f)
and Figs. 7 and 8 with the characteristics of the rule sets
(Table 4), we can see that dual FA performs the best when
there is a small number of problematic NFA states, and they

cause severe state explosion in DFA, e.g., in rule sets #1
and #6. For software implementation, a small number of
problematic NFA states means the number is not larger than
the length of a computer word. In these cases, dual FA 1 can
be two orders of magnitudes smaller than MDFA 2 and runs
faster than MDFA 2 even when the latter is highly
accelerated by memory hierarchy.

Finally, as a limitation of dual FA, the number of LFA
states cannot be large. In personal computer implementa-
tion, a large number of LFA states results in significantly
more computational overhead. Also, a large number of LFA
states results in a larger per-flow state, a larger transition
table entry size (memory bandwidth) and a larger transition
table storage size.

6 RELATED WORK

Prior work on regular expression matching at line rate can
be categorized by their implementation platforms into
FPGA-based implementations [23], [24], [25], [26], [27] and
general-purpose processors and ASIC hardware implemen-
tations [8], [18], [17], [14], [16], [15], [9].
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Fig. 8. Inspection speed in ms per 64 MB of payload stream in PCs with
memory hierarchy using Java.

Fig. 7. Inspection speed in ms per 64 MB of payload stream in PCs with
memory hierarchy using C++.

Fig. 6. # of memory accesses per 1 KB of payload stream.



Existing DFA state compression techniques (e.g., MDFA
[8], HFA [18], XFA [21]) and transition compression
techniques (e.g., D2FA [9], [17], CD2FA [16]) can effectively
reduce the memory storage and introduce additional
memory accesses per byte. Delayed Input Deterministic Finite
Automata (D2FA) [9], [17] uses default transitions to reduce
memory requirements. If two states have a large number of
transitions in common, the transition table of one state can be
compressed by referring to that of the other state. Unfortu-
nately, when a default transition is followed, memory must
be accessed once more to retrieve the next state.

CompactDFA [10] and HEXA [28] compress the number

of bits required to represent the states, and they are only

applicable to exact string matching.
Hybrid-FA [18], [14] prevents state explosion by per-

forming partial NFA-to-DFA conversion. The outcome is a

hybrid automaton consisting of a head-DFA and several tail

automata. The tail automata can be NFA or DFA.

Alphabet compression [17], [19], [20] maps the set of

characters in an alphabet to a smaller set of clustered

characters that label the same transitions for a substantial

amount of states in the automaton.
Recent security-oriented rule sets include patterns with

advanced features, namely bounded repetitions and back
references, which add to the expressive power of traditional
regular expressions. However, they cannot be supported
through pure DFAs [14], [29]. The back reference [12] is a
previously matched substring that is to be matched again
later. The bounded repetition, or counting constraint, is a
pattern that repeats a specific number of times. It is widely
seen in the Snort and other rule sets, and is also known to
cause state explosion. Dual FA can be extended to support
constraint repetitions using existing techniques, such as
counters, in [18], [21]. We omit bounded repetitions in this
work for simplicity.

One might think that a bounded repetition which causes
state explosion may be expanded into a number of NFA
states, and use an LFA state to implement each of these
states. However, LFA might not be suitable for bounded
repetitions because of the following reasons: 1) LFA cannot
use too many machine words. The per-flow state size and
the computational overhead of an LFA is linear to the
number of machine words it used. Therefore, an excessively
large LFA degrades the performance of its dual FA. 2) a
limited number of LFA states may not include the large
number of NFA states created by bounded repetitions, and
state explosion might remain exist. The underlying reason is
that a bounded repetition can simply result in an extremely
large state space, which has to be implemented by larger
external data structures.

7 CONCLUSION

In this paper, we proposed and evaluated a dual finite
automaton designed to address the shortcomings in existing
deep packet inspection algorithms. The dual FA consists of
a linear finite automaton that handles the states causing state
explosion without increasing memory bandwidth, and an
extended deterministic finite automaton that interacts with the
LFA. The dual FA provides an effective solution to the
conflict between storage and memory bandwidth, and it is

simple to implement. Simulation results show that,
compared with DFA and MDFA, dual FA has significantly
smaller storage demand and its memory bandwidths are
close to those of DFA. In the future, we will implement
dual FA along with other existing table compression
techniques and see how performance increases when they
work together.
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